
Software Integrity Controls

An Assurance-Based Approach to
Minimizing Risks in the Software Supply Chain

June 14, 2010

Editor
Stacy Simpson, SAFECode

Contributors
Diego Baldini, Nokia
Gunter Bitz, SAP AG
David Dillard, Symantec Corporation
Chris Fagan, Microsoft Corporation
Brad Minnis, Juniper Networks, Inc.
Dan Reddy, EMC Corporation

ii

 Table of Contents
	 Introduction	 1

	 The	Risks	to	Software	Integrity	in	a	Supply	Chain	 2

	 The	IT	System	Supply	Chain	 3

	 Software	Integrity	Controls	 4

	 Vendor	Sourcing	Integrity	Controls	 5

	 Vendor	Software	Development	Integrity	Controls	 10

	 Vendor	Software	Delivery	Integrity	Controls	 16

	 Future	Directions	 21

	 Conclusion	 23

	 Acknowledgments	 23

1

Introduction
Software	assurance	is	most	commonly	dis-

cussed	in	the	context	of	preventing	software	

vulnerabilities	that	arise	from	unintended	

coding	errors	and	other	quality	issues	ranging	

from	incomplete	requirements	to	poor	imple-

mentation.	The	reduction	of	vulnerabilities	

in	code	is	achieved	through	the	application	

of	secure	development	practices	to	the	

software	development	lifecycle,	sometimes	

referred	to	as	software	security	engineering.

However,	as	a	more	distributed	approach	

to	commercial	software	development	has	

evolved,	questions	have	been	raised	about	

what	additional	product	security	and	com-

mercial	risks	are	introduced	in	the	global	

software	supply	chain.	One	emerging	area	

of	concern	is	software	integrity,	an	example	

of	which	is	the	risk	that	malicious	code	could	

be	either	intentionally	inserted	by	a	threat	

agent	or	unintentionally	inserted	due	to	poor	

process	controls	into	a	software	product	as	

it	moves	through	the	global	supply	chain.

Analyzing	this	risk	in	the	context	of	software	

engineering	requires	an	understanding	not	

only	of	software	security	engineering,	but	also	

the	other	essential	pillars	of	software	assur-

ance—software	integrity	and	authenticity.

SAFECode	defines	software	assurance	as	“con-

fidence	that	software,	hardware	and	services	

are	free	from	intentional	and	unintentional	

vulnerabilities	and	that	the	software	func-

tions	as	intended.”	Achieving	this	confidence	

requires	software	vendors1	to	apply	practices	

and	controls	to	meet	three	key	goals:

Security: Security	threats	to	the	soft-

ware	are	anticipated	and	addressed	during	

the	software’s	design,	development	and	

testing.	This	requires	a	focus	on	security-

relevant	code	quality	aspects	(e.g.,	“free	

from	buffer	overflows”)	and	functional	

requirements	(e.g.,	“passport	numbers	

must	be	encrypted	in	the	database”).

Integrity:	Security	threats	to	the	software	

are	addressed	in	the	processes	used	to	source	

software	components,	create	software	com-

ponents	and	deliver	software	to	customers.	

These	processes	contain	controls	to	enhance	

confidence	that	the	software	was	not	modi-

fied	without	the	consent	of	the	supplier.

1.	 This	paper	uses	both	the	terms	“supplier”	and	“vendor”	to	mean	an	
entity	that	produces	software.	These	terms	may	be	used	interchangeably	
in	the	real	world,	and	the	“vendor”	practices	listed	in	this	document	apply	
to	all	software	“suppliers.”	However,	in	order	to	be	able	to	describe	the	
relationship	between	software	suppliers	without	confusion,	we	are	using	
the	term	“vendor”	throughout	the	document	to	identify	a	specific	entity	in	
a	supply	chain.	Thus,	in	this	context,	“supplier”	refers	to	an	entity	that	
provides	software	components	to	the	“vendor.”

Integrity

ASSURANCE

Security

Authenticity

Three Pillars of Software Assurance

2

Authenticity:	The	software	is	not	

counterfeit	and	the	software	supplier	

provides	customers	ways	to	differenti-

ate	genuine	from	counterfeit	software.

This	paper	is	focused	on	examining	the	soft-

ware	integrity	element	of	software	assurance	

and	provides	insight	into	the	controls	that	

SAFECode	members	have	identified	as	effec-

tive	for	minimizing	the	risk	that	intentional	

and	unintentional	vulnerabilities	could	be	

inserted	into	the	software	supply	chain.

The Risks to Software Integrity
in a Supply Chain
The	risk	of	an	attacker	using	the	supply	

chain	as	an	attack	vector	deserves	some	

further	examination.	Evidence	suggests	

that	attackers	focus	their	efforts	on	social	

engineering	or	finding	and	exploiting	exist-

ing	vulnerabilities	in	the	code,	which	are	

usually	the	result	of	unintentional	coding	

errors.	Thus,	experts	have	concluded	that	

To	help	others	in	the	industry	

initiate	or	improve	their	

own	secure	development	

programs,	SAFECode	

has	published	“Fun-

damental	Practices	

for	Secure	Software	

Development:	A	

Guide	to	the	Most	

Effective	Secure	

Development	Practices	

in	Use	Today.”	Based	on	an	analysis	

of	the	individual	software	assurance	

efforts	of	SAFECode	members,	the	paper	

outlines	a	core	set	of	secure	develop-

ment	practices	that	can	be	applied	

across	diverse	development	environ-

ments	to	improve	software	security.

The	brief	and	highly	actionable	paper	

describes	each	identified	security	

practice	across	the	software	develop-

ment	lifecycle—Requirements,	Design,	

Programming,	Testing,	Code	Handling	

and	Documentation—and	offers	imple-

mentation	advice	based	on	the	real-world	

experiences	of	SAFECode	members.	

These	practices	are	designed	to	be	used	

in	conjunction	with	the	software	integ-

rity	practices	outlined	in	this	paper.

To	obtain	a	free	copy	of	the	paper,	

visit	www.safecode.org.

This	paper	has	been	developed	

in	conjunction	with	SAFECode’s	

previously	published	“Soft-

ware	Supply	Chain	Integrity	

Framework,”	which	outlines	

a	taxonomy	for	the	software	

supply	chain	and	a	framework	

for	analyzing	and	establishing	

software	integrity	controls.

Integrity

ASSURANCE

Security

Authenticity

The Software Supply Chain Integrity Framework

Defining Risks and Responsibilities for
Securing Software in the Global Supply Chain

July 21, 2009

Editor
Stacy Simpson, SAFECode

Contributors
Dan Reddy, EMC
Brad Minnis, Juniper Networks
Chris Fagan, Microsoft Corp.
Cheri McGuire, Microsoft Corp.
Paul Nicholas, Microsoft Corp.
Diego Baldini, Nokia
Janne Uusilehto, Nokia
Gunter Bitz, SAP
Yuecel Karabulut, SAP
Gary Phillips, Symantec

http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf
http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf
http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf
http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf

3

a	supply	chain	attack	is	not	the	most	likely	

attack	vector.	Notably,	the	experiences	of	

leading	reputable	software	companies	who	

work	with	their	suppliers	support	this	finding.

Further,	there	is	growing	recognition	that	

1)	there	is	no	one	way	to	defend	against	

every	potential	vector	a	motivated	attacker	

may	seek	to	exploit;	2)	focusing	on	the	

place	where	software	is	developed	is	less	

useful	for	improving	security	than	focus-

ing	on	the	process	by	which	software	is	

developed	and	tested;	and	3)	there	are	

circumstances	when	the	insertion	of	malicious	

code	would	be	almost	impossible	to	detect.

These	challenges	highlight	that	a	risk	from	

the	supply	chain	could	indeed	undermine	

a	product’s	intended	function	or	damage	

customer	trust.	Accordingly,	major	software	

suppliers	take	preventative	action	against	any	

unauthorized	changes	in	the	form	of	software	

integrity	controls.	These	controls	preserve	the	

quality	of	securely	developed	code,	prevent	

the	inadvertent	introduction	of	vulnerabilities	

and	help	to	prevent	the	intentional	insertion	

of	malicious	code.	Vendors	leverage	these	

integrity	controls	to	achieve	these	objectives	

by	addressing	the	security	of	the	processes	

used	to	source,	develop	and	deliver	software.

The IT System Supply Chain
The	IT	system	supply	chain	is	a	glob-

ally	distributed	and	dynamic	collection	of	

people,	processes	and	technology.	Software	

is	one	component	of	a	larger	IT	solution	

and	each	software	vendor	is	only	one	part	

of	a	complex	chain	of	suppliers,	systems	

integrators	and	ultimate	end	users.	As	such,	

each	vendor	is	only	one	link	of	a	larger,	

more	complex	IT	system	supply	chain.

As	a	vendor’s	customer	may	not	be	the	

ultimate	end	user	in	the	IT	system	supply	

chain,	it	is	important	to	analyze	where	along	

the	supply	chain	software	security,	integ-

rity	and	authenticity	practices	and	controls	

can	be	applied	effectively	and	efficiently.

Each	supplier	along	the	IT	system	supply	chain	

has	both	an	opportunity	and	a	responsibility	

to	apply	software	assurance	practices	and	

controls	in	order	to	preserve	software	integrity,	

Integrity

ASSURANCE

Security

Authenticity Integrity

ASSURANCE

Security

Authenticity Integrity

ASSURANCE

Security

Authenticity Integrity

ASSURANCE

Security

Authenticity

	 Tier	n	Supplier	 Tier	2	Supplier	 Tier	1	Supplier	 Integrator

Software Assurance Is a Shared Responsibility In the IT System Supply Chain

Customer

4

security	and	authenticity	within	the	portion	of	

the	software	supply	chain	it	controls.	Naturally,	

a	vendor	has	the	most	direct	control	over	its	

own	internal	practices.	A	vendor’s	reach	into	

its	own	suppliers	for	their	software	assurance	

practices	and	controls	may	not	be	as	direct.

Within	their	respective	links	of	the	IT	systems	

supply	chain,	all	software	vendors	control	and	

manage	three	key	lifecycle	processes	where	

they	can	effectively	and	efficiently	implement	

software	assurance	practices	and	controls:

1.	 Software	Sourcing:	Vendors	select	their	

component	and	services	suppliers,	estab-

lish	the	specifications	for	a	supplier’s	

deliverables	and	have	activities	to	“on-

board”	software	and	hardware	components	

and	services	received	from	suppliers.

2.	 Software	Development:	Vendors	

build,	test,	assemble,	integrate	and	

package	components	for	delivery.

3.	 Software	Delivery:	Vendors	deliver	

the	software	product	to	customers	

and	provide	ongoing	sustainment.

It	is	within	these	three	processes	that	effective	

software	security,	integrity	and	authentic-

ity	practices	and	controls	must	be	applied	in	

order	to	improve	the	assurance	of	delivered	

software.	This	paper	will	focus	specifically	

on	the	software	integrity	controls	that	ven-

dors	apply	to	each	of	these	processes.

It	should	be	noted	that	SAFECode	member	

companies,	like	industry	companies	at	large,	

are	still	sharing	information	and	examining	

practical	and	meaningful	means	of	measur-

ing	and	verifying	software	assurance	in	the	

marketplace.	As	that	work	matures,	we	can	

expect	more	consistency	in	how	informa-

tion	about	internal	processes	is	asserted	

and	evaluated	between	trading	partners.	

Thus,	while	this	paper	focuses	on	the	prac-

tices	and	controls	involved	along	the	supply	

chain,	it	was	developed	with	the	recognition	

that	more	work	in	this	area	needs	to	be	

done,	and	it	does	not	attempt	to	be	highly	

prescriptive	with	respect	to	measurement.

Software Integrity Controls
The	following	sections	will	detail	the	soft-

ware	integrity	controls	that	SAFECode	has	

identified	as	effective	for	minimizing	the	

risk	that	vulnerabilities	could	be	intention-

ally	or	unintentionally	inserted	into	the	

software	supply	chain.	This	analysis	is	based	

on	the	real-world	experiences	of	SAFECode	

members.	These	integrity	controls	aim	to	

preserve	the	base	level	of	security	in	a	

product	achieved	through	each	supplier’s	

Software
Sourcing
• Procurement

Software Development
and Testing
• Environment
• Personnel
• Software Development

Software
Delivery
• Distribution
• Sustainment

5

secure	development	practices	by	helping	to	

prevent	the	introduction	of	vulnerabilities	as	

a	product	moves	along	the	supply	chain.

The	controls	identified	in	the	following	

sections	are	based	on	the	seven	basic	

principles	for	software	integrity	outlined	

in	SAFECode’s	previously	published	“Soft-

ware	Supply	Chain	Integrity	Framework:”

•	 Chain	of	Custody

•	 Least	Privilege	Access

•	 Separation	of	Duties

•	 Tamper	Resistance	and	Evidence

•	 Persistent	Protection

•	 Compliance	Management

•	 Code	Testing	and	Verification

These	principles	support	the	development	

of	the	software	integrity	controls	outlined	

in	this	paper	and	identified	by	SAFECode	

as	practical,	repeatable	and	auditable.

The	software	integrity	controls	described	in	

the	following	sections	do	not	represent	a	

minimum	control	list,	but	rather	are	designed	

to	be	integrated	with	other	security	practices	

and	tailored	to	meet	a	product’s	specific	risk	

profile.	Furthermore,	they	are	to	be	integrated	

into	the	vendor’s	software	engineering	process	

and	performed	in	conjunction	with	corporate	

security	functions.	These	may	include	physical	

security,	network	security,	IT	infrastructure	

security	and	business	continuity	management.

SAFECode	has	organized	the	integrity	

controls	listed	in	the	following	sections	

by	the	three	key	lifecycle	processes	each	

software	vendor	has	control	over—sup-

plier	sourcing,	product	development,	and	

product	delivery	and	sustainment.

Vendor Sourcing Integrity Controls

Software
Sourcing
• Procurement

Software Development
and Testing
• Environment
• Personnel
• Software Development

Software
Delivery
• Distribution
• Sustainment

During	the	sourcing	process	vendors	

establish	component	specifications,	select	

suppliers	of	components	and	services	

and	receive	supplied	components.

The	selection	and	application	of	software	

integrity	controls	for	use	during	sourcing	is	

a	risk-based	decision	and	largely	influenced	

by	the	nature	of	the	relationship	between	a	

vendor	and	its	software	component	supplier.

There	are	three	types	of	vendor-supplier	rela-

tionships:	First,	“arms	length”	relationships	

where	vendor	A	licenses	a	component	from	

supplier	B.	Second,	work-for-hire	relationships	

where	vendor	A	engages	supplier	B	to	provide	

a	software	component.	Third,	work-for-hire	

relationships	where	vendor	A	engages	supplier	

B	to	provide	a	staff	augmentation	service.

6

Relationships	between	a	vendor	and	a	sup-

plier	based	on	licensing	finished	components	

like	databases,	enterprise	resource	manage-

ment	systems,	or	operating	systems	are	

examples	of	arms	length	relationships.	It	

is	incumbent	on	suppliers	that	license	their	

software—typically	suppliers	of	commercial-

off-the-shelf	(COTS)	products	or	Open	

Source	Software	(OSS)	components—	1)	to	

assure	that	security	threats	to	the	product	

or	component	are	anticipated	and	addressed	

during	its	design,	development	and	test-

ing;	2)	to	assure	that	the	processes	used	

to	source	and	create	components,	and	to	

deliver	the	product	to	their	customers	are	

secure;	and	3)	their	suppliers	provide	ways	

for	their	customers	to	differentiate	genuine	

products	and	components	from	counterfeit.

In	relationships	based	on	work-for-hire,	the	

software	delivered	by	a	supplier	to	a	vendor	

is	owned	by	the	vendor.	The	integrity	controls	

used	by	the	supplier	may	be	the	supplier’s,	

the	vendor’s	or	any	combination	thereof.	

Typically,	in	staff	augmentation	engagements	

the	vendor’s	and	supplier’s	staff	work	collab-

oratively	on	projects	that	share	code	libraries,	

tools	and	resources,	and	all	project	members	

utilize	the	same	software	integrity	controls.

In	each	of	the	above	relationships,	the	ven-

dor	has	different	degrees	of	control	over	

the	integrity	practices	and	controls	used	

by	its	supplier.	It	is	this	level	of	control	

that	guides	the	selection	of	the	software	

integrity	practices	and	controls	neces-

sary	to	minimize	software	integrity	risks.

The	next	section	describes	integrity		

controls	that	can	be	used	in	a	vendor’s		

sourcing	process.

Vendor Contractual Integrity Controls
A	vendor’s	engagement	with	a	supplier	

should	be	governed	by	a	written	agree-

ment,	for	example	a	license	or	a	contract.	

The	written	agreement	must	explicitly	state	

the	vendor’s	and	supplier’s	expectations,	

as	well	as	the	consequences	of	any	non-

compliance	with	the	terms	of	the	agreement.

Defined	Expectations

•	 Clear	language	regarding	the	requirements	

to	be	met	by	the	code	and	the	develop-

ment	environment	should	be	set	forth	

during	the	contracting	process.	Among	

other	things,	this	should	include	commit-

ments	to	provide	security	testing,	code	

fixes	and	warranties	about	the	software	

development	and	delivery	process	used.	

Overall	this	helps	to	set	the	expectation	

of	delivering	a	product	with	integrity.

Ownership	and	Responsibilities

•	 Intellectual	property	ownership	and	

responsibilities	for	protecting	the	

code	and	development	environment	

should	be	clearly	articulated.

Vulnerability	Response

•	 In	today’s	world,	vendors	must	push	for	

a	more	formal	understanding	of	how	well	

their	suppliers	are	equipped	with	the	capa-

bility	to	collect	input	on	vulnerabilities	from	

7

researchers,	customers	or	sources	and	

turn	around	a	meaningful	impact	analysis	

and	appropriate	remedies	in	the	short	

timeframes	involved.	The	fact	is	that	the	

handling	of	such	vulnerabilities	will	likely	

become	a	joint	responsibility	in	the	face	of	

downstream	visibility	to	customers.	No	one	

can	afford	to	be	surprised	about	a	suppli-

er’s	potential	immaturity	in	handling	these	

challenges	in	the	middle	of	a	situation.	

Suppliers	provide	common	terminology	

for	these	discussions	by	using	now-default	

references	to	well-known	specifications	

like	Common	Vulnerabilities	and	Exposures	

(CVE)	and	Common	Vulnerability	Scoring	

System	(the	CVSS).	Each	party	should	

identify	contact	personnel	and	review	tim-

ing	and	escalation	paths	as	appropriate	to	

be	prepared	to	provide	a	prompt	response.

Security	Training

•	 Another	important	area	for	discussion	

between	trading	partners	is	assessing	a	

supplier’s	capability	to	effectively	train	

its	developers	on	secure	development	

practices.	While	it	is	not	necessary	to	

be	highly	prescriptive	about	a	particu-

lar	curriculum	or	certification	regime,	a	

company	cannot	credibly	assert	that	it	

has	a	secure	development	framework	or	

that	it	follows	integrity	practices	if	there	

is	no	evidence	of	any	relevant	training.

The	contracts	between	companies	regard-

ing	software	have	typically	been	focused	

on	expectations	regarding	functional	

performance,	defect	handling,	licensing	

issues	and	other	challenges	like	end-of-

life	support.	As	concerns	about	protecting	

software’s	integrity	have	escalated	along	

with	reducing	the	risk	of	counterfeit	com-

ponents	and	products,	contracts	evolved	

further	to	address	this	in	language.

New	language	that	specifically	addresses	

the	issue	of	integrity	and	authentic-

ity	of	COTS	product	components	from	

external	suppliers	that	will	be	included	

in	the	ultimate	product	can	also	be	

explored.	The	language	would	ask	sup-

pliers	to	self-certify	that	the	supplier’s	

software	aligns	with	security	standards	

and	that	the	supplier’s	practices	align	

with	best	practices	of	industry	code	

security	and	integrity	organizations	

like	SAFECode	or	its	equivalent.

8

Open	Source	Software

The	use	of	open	source	software	pres-

ents	alternative	challenges	in	the	

context	of	supply	chain	integrity.

While	in	some	cases	a	commercial	entity	may	

package	and	support	open	source	software,	

other	open	source	software	is	managed	by	a	

community	with	which	a	direct	relationship	

cannot	be	established.	In	the	latter	case,	the	

trust	and	accountability	between	a	vendor	

and	the	community	supplying	software	is	

different.	Notably,	the	contractual	terms	

that	vendors	establish	with	commercial	sup-

pliers	do	not	apply	to	community-supplied	

components	as	there	is	no	direct	supplier	

with	whom	to	establish	an	agreement.	Exist-

ing	license	terms	governing	the	use	of	open	

source	software	are	focused	on	ensuring	

that	combinations	of	the	software	with	other	

software	are	consistent	with	the	community’s	

expectations.	Those	license	terms	may	not	

provide	sufficient	support	for	efforts	to	protect	

software	integrity.	Other	controls	similar	to	

those	present	in	commercial	vendor-supplier	

agreements	may	need	to	be	implemented	for	

community-supplied	software.	For	instance,	

as	vulnerabilities	are	visible	to	anyone	and	

because	their	exploitability	can	be	readily	

assessed,	open	source	communities	may	call	

for	more	active	vulnerability	management	

and	incident	handling,	and	users	in	the	field	

may	request	quicker	software	updates.

As	a	result,	the	process	used	to	evaluate	

and	select	open	source	software	components	

deserves	consideration.	Software	ven-

dors	analyze	the	reputation	and	release	

engineering	practices	of	the	community	

supporting	an	open	source	component	to	

help	assess	its	competence	and	reliability	

in	dealing	with	security	matters.	While	

the	vetting	practices	will	vary	depend-

ing	on	the	specific	product	needs	and	risk	

profile,	means	to	validate	open	source	pack-

ages	and	their	distribution	sites	need	to	

be	adopted	and	developed,	respectively.

A	viable	integrity	control	for	community	

open	source	components	is	for	a	vendor	to	

get	the	source,	review	it	and	build	it.	Vali-

dating	the	quality	of	open	source	software	

needs	to	happen	after	acquisition	of	the	

code.	Vendors	may	choose	to	include	an	

open	source	component	or	leave	it	up	to	the	

acquirer	to	obtain	and	evaluate	the	compo-

nent.	For	vendor-supported	OSS,	an	acquirer	

can	transfer	risk	to	the	vendor	through	

appropriate	language	in	their	agreement.	

Otherwise	in	either	case,	procedures	must	be	

implemented	for	the	inspection	of	software	

components	for	the	presence	of	vulnerabilities	

and	for	the	assessment	of	the	trustworthi-

ness	of	the	component’s	distribution	site.

In	general,	a	vendor	must	under-

stand	how	each	of	its	suppliers	

handles	the	open	source	components	

that	are	shipped	with	its	own	code.

9

Vendor Technical Integrity
Controls for Suppliers

Secure	Transfer

•	 Delivered	code	should	be	transferred	

securely,	using	authenticated	endpoints	

and	encrypted	sessions.	Content	being	

delivered	should	be	encrypted	for	transit.	

This	requires	that	suppliers	use	the	best	

available	technology,	mechanisms	and	

procedures	when	exchanging	deliverables.	

A	secure	end-to-end	automated	process	

can	often	strengthen	the	protection	that	

could	be	resident	in	a	manual	procedure.

Sharing	of	System	and	Network	Resources

•	 The	digital	identities	a	vendor	issues	to	

suppliers	to	enable	access	to	the	ven-

dor’s	network	and	resources	should	be	

established	with	strong	controls	enforced	

to	limit	access	to	only	those	resources	

needed	to	perform	the	supplier’s	role.

	– Each	resource	that	is	shared	should	

have	its	own	independent	assess-

ment	as	to	what	authentication	and	

authorization	is	required.	For	example,	

staff	access	to	a	vendor’s	development	

project	requires	additional	authoriza-

tion	over	and	above	the	authorization	

a	staff	member	receives	in	order	to	

access	a	vendor’s	corporate	network.

	– A	supplier’s	access	to	development	

assets	should	expire	as	soon	as	it	leaves	

the	project.	A	fail-safe	check	should	

also	be	in	place	to	end	all	privileges	

automatically	at	contract	expiration	

or	at	another	fixed	period.	A	robust	

procedure	is	required	so	that	when	a	

supplier’s	employee	leaves	the	sup-

plier	company,	the	former	employee’s	

credentials	immediately	expire.	A	

combination	of	automatic	disabling	and	

manual	notification	is	best	to	ensure	

completeness	of	privilege	removal.

Malware	Scanning

•	 Supplier	content	to	be	transmitted	to	

the	vendor	should	be	scanned	for	mal-

ware	using	the	most	recent	malware	

signature	files	and	more	than	one	com-

mercial	scanning	engine.	While	today’s	

malware	scanning	tools	are	generally	not	

designed	to	identify	malicious	code	that	is	

perfectly	formed,	this	standard	integrity	

control	should	be	performed	at	points	of	

exchange	between	parties.	Depending	

on	the	relationship	and	the	practicality	of	

doing	so,	suppliers	should	inform	recipi-

ents	of	the	code	as	to	what	scanning	has	

taken	place	up	to	the	point	of	transfer.

Secure	Storage

•	 Source	code	for	software	components	

and	products	should	be	stored	securely	

with	need-to-know	access	controls	

applied.	Code	packages	that	are	trans-

ferred	should	be	moved	to	a	secure	

asset	repository	as	soon	as	practical	so	

that	they	can	be	managed	more	pre-

cisely	with	respect	to	access	privileges.

10

Code	Exchange

•	 Processes	using	digitally	signed	pack-

ages	and	verifiable	checksums	or	hashes	

should	be	in	place	to	ensure	that	received	

code	is	complete	and	authentic.	Verifying	

the	digital	signatures	with	validated	time	

stamps	of	the	software	packages	proves	

authenticity	and	establishes	that	the	

download	or	transfer	process	delivered	an	

intact	version	of	the	intended	package.

Vendor Software Development
Integrity Controls

In	software	development	and	test-

ing,	software	vendors	build,	assemble,	

integrate	and	test	software	components	

to	finalize	them	for	delivery.

Software	vendors	have	a	great	deal	of	

experience	implementing	powerful	man-

agement,	policy	and	technical	controls	to	

achieve	sound	engineering	practices	and	

intellectual	property	protection.	The	secure	

development	practices	that	focus	primar-

ily	on	achieving	the	“security”	circle	in	the	

software	assurance	triad	described	above	

become	the	baseline	for	internal	development.

Within	a	software	vendor’s	organiza-

tion,	additional	software	integrity	controls	

may	exist	within	the	context	of	other	IT	

functions	such	as	backup	and	recovery,	

business	continuity,	physical	and	network	

security,	and	configuration	management	

systems.	The	following	are	examples	of	

controls	employed	by	SAFECode	members:

People	Security

•	 It	should	be	noted	that	while	criminal	

background	checks	are	often	the	focus	

of	public	debate,	in	practice	SAFECode	

members	have	found	that	they	are	not	as	

effective	as	other	controls	and	processes.	

Focusing	on	organizational	and	process	

controls	in	conjunction	with	technology	

to	minimize	risks	coming	from	within	the	

company	is	more	efficient	and	effective.	

For	that	reason,	many	of	the	following	

controls	to	minimize	the	risk	from	mali-

cious	insiders	are	based	on	practices	

such	as	the	segregation	of	duties	and	the	

use	of	controlled	automated	processes.

•	 It	is	important	that	roles,	responsibili-

ties	and	access	rights	are	clearly	defined	

in	development	processes	to	achieve	a	

defense-in-depth	approach.	Development	

management	must	be	knowledgeable	as	

to	who	has	what	access.	A	team	of	people	

with	well-planned	responsibilities	must	

maintain	appropriate	operations	for	guard-

ing	code	assets	while	meeting	the	demands	

of	the	global	engineering	environment.

Software
Sourcing
• Procurement

Software Development
and Testing
• Environment
• Personnel
• Software Development

Software
Delivery
• Distribution
• Sustainment

11

•	 In	addition	to	the	expected	training	in	

secure	development	practices,	there	

should	be	training	in	the	secure	techni-

cal	controls	used	by	other	integrity	

practices.	Does	each	organization	know	

how	to	verify	a	digital	signature	with	

a	validated	timestamp?	Does	each	

organization	understand	which	hash	algo-

rithms	are	best	used	in	a	checksum?

Physical	Security

•	 Building	security	and	physical	access	

control	should	be	applied	to	develop-

ment	locations	and	code	repositories	and	

periodically	re-assessed	using	a	risk-based	

process.	Physical	security	controls	should	

be	strong	enough	to	ensure	that	devel-

opment	assets	cannot	be	accessed	by	

outsiders.	Physical	protection	of	source	

code	should	go	beyond	a	single	layer	of	

building	security	and	include	additional	

distinct	physical	access	controls	that	limit	

access	to	those	with	a	“need	to	know.”	

For	example,	additional	badge	restricted	

access	beyond	the	normal	building	access	

should	be	required	for	administrators	

to	access	code	assets	protected	in	a	

repository.	Physical	assets	and	credentials	

While	SAFECode’s	Development	Practices	

paper	describes	how	to	identify	and	avoid	

typical	coding	errors	such	as	buffer	over-

flows,	SQL	injection,	cross	site	scripting	

and	more,	this	current	work	deals	with	the	

question	of	preserving	the	integrity	of	an	

IT	product.	The	integrity	practices	serve	

as	controls	to	prevent	unauthorized	or	

inadvertent	changes	to	the	source	code.

Without	proper	controls,	vulnerabilities	

can	be	introduced	by	”good	faith”	develop-

ers.	For	example,	while	fixing	a	problem	in	

their	part	of	the	code	with	dependencies	

elsewhere,	a	developer	might	inadvertently	

change	code	while	merging	it	with	a	related	

function	(e.g.,	an	interface)	primarily	owned	

by	another.	Without	proper	integrity	controls,	

this	change	might	go	undetected	and	could	

cause	problems	elsewhere	because	nobody	

was	expecting	the	function	to	have	changed.

A	combination	of	good	access	controls,	

testing	and	peer	review	of	changes	could	

minimize	this	risk.	Thus	integrity	controls	

can	aim	at	preserving	the	well-constructed	

code	for	the	approved	specification	while	

preventing	careless	or	inadvertent	changes.	

Integrity	controls	throughout	the	supply	

chain	will	also	reduce	the	risk	of	a	malicious	

attacker	being	able	to	change	code	inten-

tionally	or	perhaps	detect	a	virus	before	it	

spreads	into	the	production	environment.

Integrity Controls vs. Development Practices

12

(e.g.,	keys,	badges,	security	tokens,	

smartcards,	laptops,	etc.)	loaned	to	an	

individual	should	be	retrieved	and	veri-

fied	against	a	list	of	expected	assets	as	

part	of	a	managed	termination	process.

Network	Security

•	 Network	security	standards	should	be	

established	and	applied	using	a	risk-based	

process	for	the	code-related	assets.	For	

example,	security	protections	could	include	

intrusion	detection	or	other	defensive	

measures	on	source	code	repositories	

with	alerting	to	appropriate	event	sys-

tems	that	would	alarm	during	an	attack.	

Session	traffic	involving	source	code	

should	be	encrypted	to	acceptable	com-

pany	or	applicable	industry	standards.

•	 Access	to	developer	workstations	should	

be	controlled.	For	example,	workstations	

can	be	tied	to	corporate	authentication	to	

ensure	that	terminated	workers	are	imme-

diately	denied	further	access.	Accounts	

of	departing	employees	and	other	autho-

rized	workers	should	be	properly	disabled	

immediately	to	allow	appropriate	review	of	

their	work.	It	is	important	to	disable,	and	

not	delete,	accounts	so	that	a	full	forensic	

analysis	is	still	possible	after	termination.

•	 Workstation	and	virtual	machine	security	

should	be	secured	to	standards	to	mini-

mize	the	opportunity	for	malicious	code	to	

be	introduced	during	the	coding	process.	

Developers	should	have	write	access	to	

the	minimum	code	necessary	to	carry	

out	their	responsibility.	Access	to	code	

stored	on	local	machines	should	also	be	

controlled	based	on	a	“need-to-know”	and	

“least-privilege”	basis	to	the	extent	possible	

given	the	goals	of	the	project	at	hand.

Code	Repository	Security

•	 All	code-related	assets	should	be	

housed	in	source	code	repositories	

(also	known	as	configuration	manage-

ment	systems	or	source	code	control	

systems),	to	enable	additional	atten-

tion	to	security	and	access	control.

•	 The	servers	that	host	the	source	code	

repositories	should	be	housed	securely.	

In	most	major	software	vendors,	these	

machines	are	located	in	data	centers	with	

appropriate	physical	security,	hardened	

server	security	and	business	disaster	

recovery	controls.	Be	mindful	that	source	

code	is	sometimes	copied	and	kept	in	

separate	databases	after	being	run	through	

some	static	code	analysis	tools.	The	confi-

dentiality	of	code	files	should	be	protected	

in	all	locations.	This	avoids	unauthorized	

people	from	seeing	the	code	structure	

and	test	results.	Combined	access	to	such	

information	might	enable	them	to	better	

target	particular	code	files	in	a	later	attack.

•	 The	“out	of	the	box”	defaults	of	any	such	

system	must	be	examined	and	configured	

to	be	secure	by	default,	ideally	accord-

ing	to	a	well-understood	standard	for	a	

13

system	holding	an	acquirer’s	precious	

assets	such	as	its	customers’	personal	

identifiable	information.	One	objective	

would	be	for	the	system	to	operate	without	

the	risk	of	allowing	exploits	through	eas-

ily	inherited	system-level	root	privileges.	

Many	detailed	settings	such	as	authen-

tication	handling,	session	variables	and	

external	interfaces	must	be	addressed	to	

deliver	secure-by-default	deployment.	A	

software’s	default	state	should	promote	

security.	For	example,	software	should	

run	with	the	least	necessary	privileges	

and	services	that	are	not	widely	needed	

should	be	disabled	by	default	or	only	

accessible	to	a	small	population	of	users.

•	 Once	enabled	as	secure	by	default,	that	

configuration	status	itself	must	be	pro-

tected.	As	more	systems	like	repositories	

become	compliant	with	specifications	like	

the	emerging	Security	Content	Automa-

tion	Protocol	(SCAP)	specifications,	the	

configuration	state	of	the	repository	and	

subsequent	changes	can	be	expressed	

and	consumed	in	machine-readable	

form,	offering	greater	initial	and	ongo-

ing	protection	supported	by	automation.

•	 Ideally,	access	to	source	code	repositories	

should	be	controlled	through	the	use	of	

corporate	identity	systems,	with	strict	

control	maintained	over	access	to	any	

system	account.	Engineering	administra-

tors	responsible	for	managing	application	

repositories	should	be	named	users	with	

distinct	identities	to	provide	accountability.	

Administrative	practices	should	observe	

the	separation	of	duties	principle,	and	

elevated	permissions	should	be	subject	

to	management	approval.	For	instance,	

project	engineering	administrators	require	

a	higher	level	of	access	to	code	assets	

to	perform	their	duties	than	network	

security	administrators.	Other	person-

nel	such	as	IT	or	Security	Operations	

may	have	responsibility	for	base-level	

configurations	and	the	overall	platform	

profile	including	security	patch	levels,	etc.

•	 Within	the	repositories,	access	to	

branches,	work	areas	or	code	sets	

must	be	understood	by	development	

management,	and	access	privileges	

should	be	granted	using	the	principles	

of	least	privilege	and	need	to	know.

•	 Code	segments	can	be	tied	to	spe-

cific	requirements	in	a	requirements	

management,	enhancement	or	bug	

tracking	system	that	allows	for	cross	

mapping	of	functionality	to	code.

•	 Change	management	practices	with	review	

and	approval	paths	should	be	formalized	

and	well	understood	for	code	logic	and	

asset	changes,	repository	application	and	

underlying	system	configuration	changes.

•	 Change	logs	for	all	modifications	to	a	

product’s	code	assets	should	be	main-

tained	and	preserved	for	future	analysis.	

Logs	should	provide	file	names,	account	

name	of	the	person	checking	in	the	file,	

14

A	company	can	have	source	code	policy	

and	standards	that	product	engineer-

ing	teams	are	expected	to	meet	in	the	

context	of	protecting	source	code	and	

product	artifacts	throughout	the	product	

development	cycle.	For	example,	these	

could	include	detailed	corporate	expecta-

tions	regarding	the	protection	of	source	

code	repositories	and	build	environments.

Some	might	be	simple	requirements,	like	

“Source	Code	Systems	should	leverage	

corporate	identity	stores	for	authentication,”	

and	perhaps	obviously	that	“no	anonymous	

access	can	be	allowed	to	a	repository.”	

Others	are	more	detailed,	such	as	which	

particular	systems	for	handling	internal	

request	and	approval	routing	for	source	

code	repository	privileges	must	be	used	

by	each	engineering	team.	Setting	up	the	

linkage	between	source	code	repositories	

and	the	set	of	build	tools	is	challenging	

since	automation	and	accountability	must	

be	blended.	A	practical	approach	is	needed	

such	that	the	sets	of	tools	can	be	consistent	

and	automated,	while	still	making	it	known	

who	created	and	ran	the	scripted	environ-

ment	that	produced	a	particular	build.	In	

addition,	build	scripts	need	protection	as	

critical	assets.	This	internal	standard	also	

ties	into	corporate	security	polices	and	con-

trols	such	as	the	credentialing	requirements	

for	personnel	and	handling	of	digital	identi-

ties,	a	key	bridge	to	best	practices	around	

the	protection	of	source	code	repositories.

An	active,	ongoing	relationship	with	engi-

neering	teams	places	the	internal	security	

team	in	the	best	position	to	effect	ongoing	

improvements	to	the	protection	of	code	

throughout	its	lifecycle.	The	requirements	

should	not	distract	by	simply	attempt-

ing	to	force	everyone	to	use	an	identical	

repository,	but	to	set	the	standard	for	how	

a	repository	should	be	set	up	and	operated	

securely.	The	approach	taken	in	working	

with	engineering	teams	is	to	assess	the	

gaps	that	exist	between	where	a	group	is	

today	on	each	item	in	the	standard	and	to	

build	an	improvement	plan	for	closing	the	

gaps	as	part	of	a	risk-based	approach.

15

check-in	time	stamp,	and	the	line	changes	

made.	They	should	be	kept	for	a	suf-

ficient	time	in	a	protected	environment	

to	assist	with	any	forensics	or	ongo-

ing	security	improvement	initiatives.

•	 A	manifest	of	all	code	assets	contributing	

to	a	product,	including	those	developed	

in-house	and	by	third	parties,	should	be	

maintained	and	managed,	similar	to	a	Bill	

of	Materials	in	the	manufacturing	domain.

•	 Versions	of	software	assets	with	their	

known	security	characteristics	should	

be	tracked	in	the	repository.	Change	or	

configuration	management	should	be	

tracked	as	well	to	find	the	balance	between	

getting	the	latest	patches	and	updates	

and	having	stable,	predictable	code.

Build	Environment	Security

•	 Build	environments	should	be	as	automated	

as	possible.	This	minimizes	the	opportunity	

for	human	intervention	in	the	regular	build	

process.	However,	the	“owners”	of	the	build	

environment	should	be	few.	The	traceability	

of	actions	on	build	scripts	and	of	access	

to	code	files	during	build	should	be	high.

•	 Build	automation	scripts	should	be	treated	

in	a	manner	similar	to	other	source	

code	assets	and	checked	in	to	the	code	

repository.	This	means	that	changes	to	

the	automated	build	process	can	be	attrib-

uted	to	the	person	checking	in	the	file.

•	 Service	accounts	that	run	in	an	automated	

fashion	between	source	code	repositories	

and	build	tools	should	be	traceable	to	

individuals	with	the	authority	to	execute	

the	automated	scripts	or	procedures.

Peer Reviews and Security Testing
One	security	engineering	practice	that	all	

SAFECode	members	use	in	conjunction	with	

their	software	integrity	controls	is	security	

testing.	Source	code	and	binary	analysis	

tools,	and	sometimes	manual	code	review,	

are	performed	on	code	to	identify	common	

coding	patterns	that	are	known	to	have	

been	attacked	previously.	Testing	tech-

niques	are	continually	upgraded.	Security	

engineering	practices	complement	software	

integrity	controls	because	security	engi-

neering	practices	represent	an	ever-rising	

threshold	against	software	supply	chain	

vulnerabilities.	The	testing	techniques	below	

are	primarily	software	security	engineering	

practices,	not	software	integrity	controls.

Peer	Review

•	 Peer	reviews	and	the	manual	inspection	

of	code	are	not	often	popular	given	issues	

of	scalability.	Automated	tools	can	enable	

some	scalability	by	collecting	and	process-

ing	more	artifacts	in	preparation	for	peers	

performing	a	focused	review.	Also,	when	

teams	are	assigned	to	work	together	on	

code	files,	an	important	dynamic	is	present	

whereby	reviewers	can	more	readily	iden-

tify	code	that	does	not	belong	within	a	code	

set.	Focusing	peer	reviewers	on	changed	

code	that	is	scanned	again	and	awaiting	

16

approval	during	a	two-stage	check-in	to	

the	repository	can	be	an	effective	approach.	

Another	approach	is	to	couple	peer	reviews	

in	relation	to	exercised	code	paths	in	the	

context	of	overall	code	coverage.	In	gen-

eral,	questions	about	the	structure	and	

purpose	of	sections	of	code	that	arise	dur-

ing	peer	review	are	more	likely	to	uncover	

intentional	malicious	code	or	inadvertent	

code	errors	than	automated	testing	alone.

Testing	for	Secure	Code

•	 The	size	of	the	code	base	for	many	soft-

ware	projects	today	requires	automated	

code	review	and	testing	tools.	Additional	

information	on	secure	code	testing	can	

be	found	in	SAFECode’s	“Fundamental	

Practices	for	Secure	Software	Develop-

ment”	paper.	Building	these	tests	to	

run	in	a	repeatable	automated	manner	

increases	the	assurance	that	they	will	

be	performed	and	analyzed	often.

•	 The	list	below	identifies	the	most	com-

mon	categories	of	testing	tools	used:

	– Static	code	analysis	tools	(source	code)

	– Network	and	web	application	vulner-

ability	scanners	(dynamic	testing)

	– Binary	code	analysis	tools

	– Malware	detection	tools	(dis-

cover	backdoors,	etc.)

	– Security	compliance	validation	tools	

(hardening,	data	protection)

	– Code	coverage	tools

While	security	testing	is	a	fundamental	part	

of	supply	chain	security,	software	vendors	

recognize	that	testing	alone	is	not	likely	to	

catch	malicious	code	that	is	intentionally	

inserted,	perfectly	crafted	and	disguised	to	

appear	as	legitimate.	Due	to	these	limitations,	

software	testing	must	be	augmented	with	

the	other	listed	software	integrity	practices	

that	control	access	to	development	assets	to	

more	effectively	address	potential	software	

security	risks	in	this	stage	of	the	supply	chain.

Vendor Software Delivery
Integrity Controls

This	stage	of	the	software	supply	chain	

covers	new	product	delivery	and	the	

delivery	of	maintenance	patches.

It	is	important	to	note	that	while	this	may	

be	the	last	stage	of	the	supply	chain	directly	

under	a	software	vendor’s	control,	it	is	not	

always	the	final	step	in	the	supply	chain	from	

the	end	user’s	point	of	view,	as	software	

vendors	often	do	not	provide	their	products	

directly	to	end-user	organizations.	In	many	

cases,	the	software	vendor’s	products	are	

passed	to	system	integrators,	resellers	and	

authorized	service	providers	before	reaching	

Software
Sourcing
• Procurement

Software Development
and Testing
• Environment
• Personnel
• Software Development

Software
Delivery
• Distribution
• Sustainment

17

the	end-user.	Thus,	as	software	components	

leave	the	supplier,	software	integrity	and	

authenticity	become	a	shared	responsibil-

ity	between	supplier	and	customer.

Publishing and Dissemination
The	controls	for	product	delivery	are	

similar	to	those	for	the	receipt	of	code	

components	from	software	suppliers	to	the	

software	vendor	as	described	in	the	Sourc-

ing	section	of	this	paper.	However,	additional	

security	needs	arise	once	the	software	

product	is	complete.	These	include	state-

of-the-art	anti-malware	checks	and	the	

availability	of	a	mechanism	that	provides	

a	way	for	customers	to	assure	themselves	

of	the	integrity	of	the	delivered	package.

Malware	Scanning

•	 Products	should	be	scanned	for	malware	

using	the	most	recent	malware	signature	

files	and	more	than	one	commercial	scan-

ning	engine.	As	mentioned	earlier	and	

depending	on	the	nature	of	the	relationship,	

it	may	be	appropriate	to	communicate	what	

scanning	was	done	prior	to	the	handover.

Code	Signing

•	 The	software	vendor’s	product	should	be	

strongly	digitally	marked	with	the	software	

vendor’s	identity	in	a	way	that	can’t	be	

altered,	yet	may	be	verified	by	customers.

Delivery

•	 A	vendor’s	process	for	delivering	

products	both	online	and	through	dis-

tributions	using	physical	and	electronic	

media	should	be	secured.	Informa-

tion	on	code	signing	and	checksums	

should	be	available	to	customers.

Transfer

•	 Transfer	products	in	such	a	way	that	the	

receiver	can	confirm	that	the	product	

is	coming	from	the	software	vendor.

Authenticity Controls
For	all	the	work	that	software	vendors	do	

in	ensuring	they	produce	a	quality	product	

free	from	vulnerabilities,	there	remains	

residual	supply	chain	risk	after	the	product	

has	been	released.	Millions	of	customers	

every	year	unsuspectingly	acquire	coun-

terfeit	software.	According	to	the	Business	

Software	Alliance,	over	one	in	five	software	

packages	are	counterfeit	or	pirated.2

While	not	a	central	focus	of	this	

paper,	authenticity	or	anti-

counterfeiting	controls	are	

one	of	the	three	essential	

elements	of	software	

assurance	and	thus	

are	tightly	integrated	

with	software	integrity	

controls,	especially	as	

2.	Business	Software	Alliance,	“Sixth	Annual	BSA-IDC	Global	Software	
Piracy	Study,”	May	12,	2009.

Integrity

ASSURANCE

Security

Authenticity

18

software	is	prepared	for	delivery.	Thus,	it	

is	important	to	highlight	the	key	authentic-

ity	controls	used	by	software	vendors	in	the	

software	delivery	link	of	the	supply	chain.

Counterfeit	products	often	look	authentic,	

but	they	pose	serious	risks	to	customers.	

Counterfeit	software	cannot	be	assured	to	

function	as	intended	and	often	contains	

malicious	code	aimed	at	data	destruction	or	

theft.	Protecting	customers	and	businesses	

from	the	risks	of	counterfeit	software	requires	

both	engineering	efforts	by	software	vendors	

and	awareness	and	recognition	by	acquir-

ers	and	end	users.	The	risk	of	counterfeit	

software	can	be	greatly	reduced	through	

purchase	from	only	authorized	resellers,	

careful	examination	of	product	packaging	and	

media,	and	technology	to	notify	users	when	

they	may	be	victims	of	counterfeit	software.

Cryptographic	Hashed	or	Digitally	
Signed	Components

•	 As	mentioned	above,	digitally	signed	

components	or	checksum	hashes	are	an	

essential	authenticity	control	to	prove	

that	components	are	genuine.	With	any	

system	there	are	characteristics	of	the	

software	being	shipped	that	are	stable,	

while	there	may	be	other	items	that	vary	

with	particular	configuration	options	

as	installed.	Today	the	“signing”	of	an	

application	provides	a	capability	to	detect	

that	an	application	has	not	been	tam-

pered	with	since	the	time	it	was	signed.	

Vendors	must	find	the	right	balance	and	

offer	proof	of	authenticity	for	the	many	

predictable	aspects	of	the	software.

Notification	Technology

•	 With	a	variety	of	distribution	channels	

for	software,	including	online	distribution,	

customers	often	can’t	tell	that	they	have	

a	counterfeit	product	until	it	is	installed	

on	their	computer.	Vendors	can	leverage	

technology	to	detect	certain	aspects	of	

the	product’s	integrity	and	notify	the	user	

if	the	software	is	deemed	to	be	counter-

feit.	Sometimes	introduced	by	vendors	to	

prevent	license	piracy,	this	technology	has	

evolved	into	an	effective	integrity	control.

Authentic	Verification	during	
Program	Execution

•	 In	practice,	the	integrity	of	an	applica-

tion	can	be	verified	when	the	application	

is	installed	on	a	computer.	Additionally,	

each	time	an	application	runs	on	a	user’s	

computer,	similar	technology	can	verify	

the	integrity	of	the	files	that	make	up	the	

application.	The	hardware	and	software	

technology	used	to	verify	the	claims	

applications	and	files	make	about	their	

validity	and	integrity	is	well	understood,	

efficient	and	broadly	available.	Software	

vendors	who	already	make	use	of	this	

technology	have	invested	in	hardware,	

software,	people	and	process,	effec-

tively	“code	signing”	their	applications.

19

•	 A	vendor	with	the	right	technology	

tools	can	effectively	pre-authorize	the	

program	execution	of	only	a	specific	

set	of	applications	from	a	“good”	list,	

effectively	blocking	any	newly	spawned	

code	that	may	not	be	legitimate.

Product Deployment and
Sustainment in the Ecosystem
The	software	lifecycle	extends	beyond	delivery	

of	the	initial	software	vendor’s	product	and	

into	the	product’s	sustainment	or	mainte-

nance	phase.	As	a	result,	patches	and	hot	

fixes	should	be	subject	to	the	same	software	

integrity	controls	as	the	original	code.

It	is	important	that	authorized	service	person-

nel	with	ongoing	access	to	genuine	parts	and	

proper	disposal	procedures	are	involved	in	

the	sustainment	process.	Authorized	access	

should	convey	that	the	person	actively	works	

for	the	company	providing	the	service	and	

that	service	personnel	don’t	have	more	

privileges	on	the	installed	environment	than	

those	needed	to	complete	the	task	at	hand.

All	service	transactions	should	provide	evi-

dence	that	legitimate	service	personnel	did	

the	work,	and	evidence	should	be	available	

for	audit	and	protected	against	tampering.

Secure	Configurations

•	 Whenever	possible,	software	vendors	

should	ship	products	with	a	secure	

configuration	being	set	as	the	default	

configuration.	Secure	configurations	for	the	

supplied	software	should	be	delivered	to	

the	customer	along	with	an	outline	of	the	

risk	implications	of	the	configuration	state	

or	choices	detailed.	The	future	of	broader	

adoption	of	machine	readable	SCAP	

compliant	configurations	will	strengthen	

this	area’s	contribution	to	integrity.

Custom	Code	Extensions

•	 Software	designed	to	be	integrated	and	

extended	to	deliver	additional	functionality	

creates	another	link	in	the	supply	chain.	

Assume	that	the	original	software	and	its	

interfaces	were	secure,	fully	functional	

and	delivered	with	integrity	and	authentic-

ity.	Software	components	that	are	added	

later	to	extend	the	functions	of	an	IT	

System	must	be	also	be	treated	with	the	

same	care	as	originally	applied	by	the	

internal	development	and	testing	of	its	

supplier.	Integrators	must	follow	secure	

development	practices	as	they	extend	

code	functionality	through	the	provided	

secure	interfaces.	In	addition,	to	continue	

integrity,	their	component	assets	should	

be	cataloged	in	a	repository,	access	to	

code	restricted	based	on	“need-to-know”	

and	peer	reviews	implemented.	The	

chain	of	custody	must	be	preserved	with	

these	controls	as	the	sets	of	products	

are	assembled	for	the	solution	to	be	

delivered	to	the	ultimate	end	customer.	

Resellers	or	systems	integrators	often	

manage	this	link	in	the	supply	chain.

20

Table	1:	Summary	of	SAFECode	Software	Supply	Chain	Integrity	Controls

Processes Controls

Software	sourcing

Vendor	contractual	integrity	
controls

•	Defined	expectations

•	Ownership	and	responsibilities

•	Vulnerability	response

•	Security	training

Vendor	technical	integrity	
controls	for	suppliers

•	Secure	transfer

•	Sharing	of	system	and	network	resources

•	Malware	scanning

•	Secure	storage

•	Code	exchange

Software		
development		
and	testing

Technical	controls

•	People	security

•	Physical	security

•	Network	security

•	Code	repository	security

•	Build	environment	security

Security	testing	controls
•	Peer	review

•	Testing	for	secure	code

Software	delivery	
and	sustainment

Publishing	and		
dissemination	controls

•	Malware	scanning	

•	Code	signing

•	Delivery

•	Transfer

Authenticity	controls

•	Cryptographic	hashed	or	digitally	signed	
components

•	Notification	technology

•	Authentic	verification	during	program	
execution

Product	deployment	and	
sustainment	controls

•	Patching

•	Secure	configurations

•	Custom	code	extension

21

Future Directions
As	software	integrity	remains	an	emerg-

ing	discipline,	there	are	a	number	of	

areas	that	SAFECode	believes	deserve	

further	study	and	industry	collaboration.	

These	include,	but	are	not	limited	to:

Supplier	Management	and	Communication	
along	the	Supply	Chain

•	 The	work	that	the	software	industry	has	

undertaken	to	identify	and	implement	

secure	coding	practices,	including	the	

findings	presented	in	SAFECode’s	“Fun-

damental	Practices	for	Secure	Software	

Development”	paper,	takes	on	new	

implications	when	examined	along	the	

supply	chain	from	one	supplier	to	another.	

These	security	practices	together	with	

normal	quality	control	concerns	could	

be	reexamined	in	the	context	of	the	

exchange	of	software	and	related	infor-

mation	from	one	supplier	to	another.

Research	on	Software	Testing

•	 As	discussed	previously,	automated	test-

ing	currently	is	limited	in	its	ability	to	

detect	malicious	code	that	is	intentionally	

inserted	and	well	disguised	as	legitimate.	

Essentially,	today	automated	testing	can	

only	detect	malware	that	use	coding	

patterns	that	have	been	seen	previously.	

Increasing	the	capability	of	software	test-

ing	of	source	and	binary	code	to	identify	

vulnerabilities	is	an	area	worthy	of	future	

research	and	development.	Additional	

behavioral	analysis	of	a	piece	of	code	might	

be	a	promising	new	approach	similar	to	

what	is	already	implemented	in	some	of	

today’s	anti-virus	detection	software.

Authenticity	Ease	of	Use

•	 While	cryptography	can	be	applied	with	

checksums,	digital	certificates	and	signa-

tures	and	validated	timestamps,	the	user	

experience	to	verify	legitimate	software	

can	be	confusing	and	daunting.	Users	need	

far	easier	means	of	validating	authenticity	

so	that	they	are	not	primarily	focused	on	

clearing	their	screens	of	any	distractions	

to	get	on	with	the	tasks	at	hand.	Since	

social	engineering	attacks	sometimes	count	

on	users	dismissing	warnings	or	errors,	

ongoing	work	in	this	area	is	important.

Authentic	Software	at	Runtime

•	 How	can	end-users	assure	themselves	that	

all	software	running	on	their	machines	is	

authentic	and	trustworthy?	One	promising	

technology	advancement	is	the	Trusted	

Platform	Module	(TPM),	a	hardware	compo-

nent	that	can	be	integrated	with	a	signed	

operating	system,	signed	applications	and	

signed	add-ins	to	provide	an	end	user	the	

assurance	at	run	time	that	all	components	

are	authentic.	However,	for	TPMs	to	be	

truly	effective,	all	software	must	be	signed.	

Some	vendors,	both	community	(open	

source)	and	proprietary,	have	taken	steps	

to	enable	this	technology.	However,	an	

22

industry-wide	effort	is	necessary	to	achieve	

this	vision	as	the	computers	used	by	end	

users	contain	an	eclectic	collection	of	

software	sourced	from	a	vast	ecosystem	of	

vendors,	suppliers	and	communities.	The	

Trusted	Computing	Group	(www.trusted-

computinggroup.org)	is	an	example	of	an	

organization	actively	addressing	this	issue.

More	Comprehensive	Data	on	
Today’s	Practices	and	Controls

•	 While	SAFECode	has	offered	the	best	

thinking	of	its	member	companies	in	this	

important	emerging	area,	the	field	could	

be	furthered	by	capturing	broader	data	

from	a	larger	segment	of	information	

technology	vendors	about	their	cur-

rent	or	preferred	practices	so	that	the	

overall	community	is	guided	by	data	as	

continuous	improvements	are	made.

Software	Integrity	and	Cloud	Computing

•	 The	impact	of	cloud	computing	on	the	

“traditional”	view	of	software	supply	

chain	risks,	as	addressed	in	this	paper,	

needs	to	be	assessed.	Software	pos-

sesses	many	of	the	same	characteristics	

inherent	in	other	forms	of	intellectual	

property.	As	a	result,	issues	associated	

with	jurisdiction,	access	authorization	and	

compliance	need	to	be	assessed	for	their	

impact	on	software	integrity	controls.

Broader	Collaboration	with	Supply	
Chain	Management	Community

•	 While	the	well-established	and	mature	

supply	chain	management	community	

is	becoming	aware	of	these	emerging	

threats	to	the	IT	system	supply	chain,	

there	is	room	for	greater	collaboration	

around	a	shared	understanding	of	the	

challenges,	common	terminology	and	

existing	disciplines	that	can	be	leveraged	

across	an	even	broader	community.

Measurement

•	 SAFECode	is	currently	examining	its	mem-

bers’	practices	on	measuring	software	

assurance.	As	that	work	evolves,	there	

are	sure	to	be	implications	for	improv-

ing	the	exchange	of	integrity-related	

measures	among	trading	suppliers.

23

Conclusion
SAFECode	views	software	integrity	as	a	

fundamental	pillar	of	software	assurance.	

Protecting	the	integrity	of	software	requires	

a	set	of	controls	that	should	be	implemented	

alongside	secure	development	and	authentic-

ity	practices;	indeed,	integrity	preserves	and	

supports	security	and	authenticity	across	

the	complexity	of	a	supply	chain.	However,	

resources	and	best	practices	for	identifying	

and	analyzing	software	integrity	controls	are	

not	yet	widely	available,	creating	challenges	

for	both	software	vendors	and	customers.

While	a	software	vendor	is	only	one	link	in	

a	complex	IT	solution	supply	chain	and	has	

a	limited	ability	to	influence	the	actions	of	

the	other	entities	along	the	chain,	all	soft-

ware	vendors	have	both	the	opportunity	and	

responsibility	to	protect	the	integrity	of	the	

software	as	it	moves	through	the	link	they	

control.	This	requires	the	application	of	soft-

ware	integrity	controls	to	a	vendor’s	software	

sourcing,	development	and	delivery	processes.

SAFECode	believes	the	industry-wide	adoption	

of	software	integrity	controls	has	the	potential	

to	greatly	improve	customer	confidence	in	

IT	systems.	It	has	published	this	collection	

of	best	practices,	which	are	based	on	the	

lessons	its	members	have	learned	in	their	

individual	implementation	of	these	controls,	

in	an	effort	to	provide	guidance	to	others	

in	the	industry.	SAFECode	encourages	the	

software	industry	to	tailor	and	adopt	these	

controls,	as	well	as	continue	further	study	and	

analysis	on	additional	practices	and	controls	

to	improve	software	supply	chain	integrity.

Acknowledgments
Brad	Arkin,	Adobe	Systems	Incorporated

Eric	Baize,	EMC	Corporation

Matt	Coles,	EMC	Corporation

Robert	Dix,	Juniper	Networks,	Inc.

Yuecel	Karabulut,	SAP	AG

Paul	Nicholas,	Microsoft	Corporation

Gary	Phillips,	Symantec	Corporation

Tyson	Storch,	Microsoft	Corporation

Kevin	Sullivan,	Microsoft	Corporation

Janne	Uusilehto,	Nokia

About SAFECode
The	Software	Assurance	Forum	for	Excellence	

in	Code	(SAFECode)	is	a	non-profit	organization	

exclusively	dedicated	to	increasing	trust	in	infor-

mation	and	communications	technology	products	

and	services	through	the	advancement	of	effective	

software	assurance	methods.	SAFECode	is	a	global,	

industry-led	effort	to	identify	and	promote	best	

practices	for	developing	and	delivering	more	secure	

and	reliable	software,	hardware	and	services.	Its	

members	include	Adobe	Systems	Incorporated,	

EMC	Corporation,	Juniper	Networks,	Inc.,	Microsoft	

Corp.,	Nokia,	SAP	AG	and	Symantec	Corp.	For	

more	information,	please	visit	www.safecode.org.

©	2010	Software	Assurance	Forum	for	Excellence	in	Code	(SAFECode)

(p)	703.812.9199

(f)	703.812.9350

(email)	stacy@safecode.org

www.safecode.org

SAFECode

2101	Wilson	Boulevard

Suite	1000

Arlington,	VA	22201

